

Container Management With Kubernetes

● Gemakzucht (Nederlanders spreken prima Engels, niet-
Nederlanders spreken zelden Nederlands)

● Vertaal deze woorden (met behoud van context) zonder te
lachen:

Waarom in het Engels?

Container Federation

Image Load

Performance Engine

Orchestration Namespace

Resource allocation ...

● Proud father

● Working professionally as Linux sysop since 1997

● Started what would be my current company in 2004, as a
student

● Cynical by nature

● Vim

$(whoami)

● Creation and implementation of custom made IT infrastructures

● Remote maintenance with 24x7 monitoring and alerting

● Remote support with unlimited support hours

● Consultancy regarding infrastructure requirements

Regarding Kumina

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

good luck with that

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

good luck with that

● Operating-systems were designed in another era, with different
requirements

● We still live with that legacy

● Process isolation was not important in those early years, as all
software was developed locally and was trusted

In the (real) beginning...

● “chroot” was created by Bill Joy in 1982

● added to test BSD's installation and build system

● “CHange ROOT”, meaning the “/” as seen by the process(es)
running inside a chroot jail

– “Jail” came around in 1991 when Bill Cheswick created a honeypot
for a cracker

● Still used a lot by for example Postfix and OpenSSH daemon

● After chroot, it took a while before new changes would surface

Fake it!

● FreeBSD Jails got introduced in 2000 by Poul-Henning Kamp

● Born out of a need to compartmentalise a system for multiple
tenants

● Operating-system level virtualisation

● Generally used as VM hosting, but in fact eerily similar to LXC
and Docker

● Origin of the word “jailbreak” (Wikipedia told me)

Jailbreak!

● Linux VServer (2001)

● Mount namespace (2002)

● Solaris Zones (2004)

● OpenVZ (2005)

Advances

● Process containers/Cgroups (2006)

● Additional namespaces being introduced (2006)

– UTS (2.6.19)

– IPC (2.6.19)

– user (2.6.23)

– PID (2.6.24)

– net (2.6.24)

– more info: https://lwn.net/Articles/531114/

Towards the Modern Stack

● LXC (2008)

● LMCTFY (2013)

● Docker (2013)

● Rkt (2014)

Towards the Modern Stack

● Only contain the least amount of dependencies necessary to
start the application

● Run a single process or at least a single service

● Are stateless, or better yet, immutable

● Get config out of environment variables

● Export health metrics

Good Containers

● Allows scaling of containers

● Manages connections to containers

● Manages container lifecycles

● Does not get in the way

● Containerization transforms the data center from being machine
oriented to being application oriented

Container Management

● Disclaimer: Hard to find exact information (with Google, oh the
irony)

● Distant past: Babysitter and Global Work Queue (up till ~2006)

● Present day: Borg (production from ~2005 onwards)

● Omega Project improved Borg (scheduling, PAXOS)

Google

● Mesos started as student project at UC Berkeley RAD Lab

● First called Nexus (and demostrated under that name in 2009)

● Twitter got (very) involved in 2010 after presentation from
Benjamin Hindman

● Modelled after Google's Borg

– It is said that Google's Omega takes lessons learned from Mesos
back into Google

Mesos

● Started by Joe Beda, Brendan Burns and Craig McLuckie

– Quickly joined by other Google Engineers

● Announced by Google mid-2014

● v1.0 released July 21, 2015

– At which time it was donated to the Cloud Native Computing
Foundation

Kubernetes

● etcd

● API server

● Controller-manager

● Scheduler

Kubernetes Managing Core

Kubernetes Managing Core

● Kubelet

● Kube-proxy

● cAdvisor

● Nodes get Labels

– Examples:
● disk=ssd

● in_dmz=true

● have_crypto_accelerator=true

Kubernetes Worker Core

Kubernetes Worker Core

● Pods

– One or more containers running a service

– Exposes ports

– Has a unique IP address

– Has Labels assigned
● Examples:

– tier=frontend

– release=prod

– Placement based on Selectors
● Example: disk=ssd

The Components You Work With

● Controllers

– Manages collections of Pods

– Based on Selectors
● Example: app=bg-worker

– Different kinds of Controllers
● Examples:

– Replication Controller

– DaemonSet Controller

– StatefulSet Controller

– Job Controller

– Ingress Controller

The Components You Work With

● Services

– Provide access to applications running in Pods (if required)

– Group the Pods associated with an application for easy access

– Round-robin through all the Endpoints

– Pods (not Controllers!) get added based on... Labels!

– Can be used for internal services (backend) as well as exposed
external services (frontend)

– External services require external support (Ingress, ELB, traefik, etc.)

The Components You Work With

● Exposes a random port to the network on all nodes

● Routing to endpoints happens within kube-proxy

Kube-proxy Specifics

Kube-proxy Specifics

● Deployments

● Namespaces

● Network Policies

● Persistent Volumes

● Secrets

● Service Accounts

● Federation

Lots of Options

● Pod eviction

– First BestEffort Pods

– Then Burstable Pods

– Guaranteed Pods are not evicted

● Eviction based on resources usage

– Example with OOM-killer:
● BestEffort: oom_score_adj = 1000

● Guaranteed: oom_score_adj = -998

● Burstable: oom_score_adj = min(max(2, 1000 - (1000 * memoryRequestBytes) /
machineMemoryCapacityBytes), 999)

Failure Handling

● Log Aggregation

● Trending, monitoring and alerting

● Dashboards

Supporting Services

● Can be used to run applications over several Zones (eg. eu-
west1 and eu-central1 for AWS)

● Can be used to create hybrid clouds

● Can be used to run an application over multiple clouds (!!)

– Scale up where it is cheapest

– Move entire workloads in case of datacenter failure

● One unified interface for all clouds

– Splits dev from ops (again)

Federation

● Kubernetes community is very open, start at
https://kubernetes.io

Questions?

Thanks for listening

www.kumina.nl

Container Management With Kubernetes

● Gemakzucht (Nederlanders spreken prima Engels, niet-
Nederlanders spreken zelden Nederlands)

● Vertaal deze woorden (met behoud van context) zonder te
lachen:

Waarom in het Engels?

Container Federation

Image Load

Performance Engine

Orchestration Namespace

Resource allocation ...

Makkelijk dat ik hem ook voor andere presentaties
kan gebruiken.

● Proud father

● Working professionally as Linux sysop since 1997

● Started what would be my current company in 2004, as a
student

● Cynical by nature

● Vim

$(whoami)

Why “proud father” first? Look up the definition of
“proud” :P

● Creation and implementation of custom made IT infrastructures

● Remote maintenance with 24x7 monitoring and alerting

● Remote support with unlimited support hours

● Consultancy regarding infrastructure requirements

Regarding Kumina

We're specialising on Kubernetes and are a
registered Kubernetes Service Partner.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

You know all this?

It's all wrong.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

It depends on how you define a container, but if it's
simply “not seeing other processes”, chroot already
did a fairly good job.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

Containers are not for everyone. They do add a
certain level of complexity (if you do it correctly)
and sometimes it just does not make sense to
spend time on that.

Generally speaking, anything PHP should not run in a
container.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

No.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

No!

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

NO!

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

You get some added features that can help improve
generic security, but if your code is vulnerable, it's
vulnerable. Broken code can still wipe the
database. Broken code can still send spam. Broken
code can still crawl the web in search for other
broken code.

Low level entry points get the most press, but that's
because they are the most interesting to look at.
Most security problems are just bad code.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

good luck with that

You still need a compatible system. Think CPU
(Raspberry PI anyone?) and the like.

● Docker created containers

● Containers will solve all your problems

● Containers are secure

● Containers run anywhere without hassle

In the beginning...

chroot becam
e available in

 1982 in BSD

some (if your app is stateless)

security is process, not a product

good luck with that

Not the beginning.

● Operating-systems were designed in another era, with different
requirements

● We still live with that legacy

● Process isolation was not important in those early years, as all
software was developed locally and was trusted

In the (real) beginning...

These days, you bought a computer and you got an
entire manually regarding how to program it (in
assembly!). Languages like C and Pascal were just
emerging, standard operating systems were just
emerging. Computers were still special-purpose
devices that required an electrical engineer to
program and troubleshoot.

Process isolation is a broad term, think namespacing
and the like.

● “chroot” was created by Bill Joy in 1982

● added to test BSD's installation and build system

● “CHange ROOT”, meaning the “/” as seen by the process(es)
running inside a chroot jail

– “Jail” came around in 1991 when Bill Cheswick created a honeypot
for a cracker

● Still used a lot by for example Postfix and OpenSSH daemon

● After chroot, it took a while before new changes would surface

Fake it!

“chroot” got added to BSD on 18 March 1982 (Wikipedia
tells me). Not security feature, just path limitation.

Bill Joy was a student of Berkeley, got contracted into Sun
Microsystem as a co-founder (6 months after company
creation). He worked on it during his time as a graduate
student (a student working at University after graduation),
in a time when he also wrote the ex and vi editors.

Keep in mind that this (1982) was the time that DARPA
began to expand Arpanet and AT&T Unix would be
transformed at Berkeley to the Berkeley Software
Distribution (BSD). If you were into software, you were
hacking on kernels and file systems. Your interface was a
blinking whitish cursor on a black background. Editing
was done with line editors (until Joy created vi!).

Bill Cheswick created firewalls (together with Steven
Bellovin) in 1987 at Bell Labs.

Developed to protext applications from noisy, nosey and
messy neighbours.

● FreeBSD Jails got introduced in 2000 by Poul-Henning Kamp

● Born out of a need to compartmentalise a system for multiple
tenants

● Operating-system level virtualisation

● Generally used as VM hosting, but in fact eerily similar to LXC
and Docker

● Origin of the word “jailbreak” (Wikipedia told me)

Jailbreak!

Poul-Henning Kamp, of Varnish notoriety. Software-
craftman, did and does a lot for the FreeBSD OS. This
was paid for by Derrick T. Woolworth, as he wanted to
use it for his hosting company.

Stable and secure environment for process isolation. In
general used as a VM hosting solution (so it has an entire
OS and even runs an init, both of which can be done on
Docker as well, but is discouraged).

Used a lot in days of yore by shared hosting providers
(keep in mind that this was way before the advent of
cloud in 2006).

Very mature system, very flexible when using ZFS as the
backing store. Features are still being added.

Does not support live migration (but neither does Docker).
We're done here. Feature-wise they compare. Jails just

don't run on Linux. Linux needed some more iterations
before it could do this.

(Also, Docker is about portable images, but FreeBSD has
ZFS...)

● Linux VServer (2001)

● Mount namespace (2002)

● Solaris Zones (2004)

● OpenVZ (2005)

Advances

VServer is not related to Linux Virtual Server (which
is loadbalancer). Shares host kernel and can share
filesystem as well. Processes within VServer are
processes on host (slightly better performance,
cache handling)

“Light” container (network isolation, not virtualisation,
so cannot have routing and the like), has less
control over disk I/O resource allocation and
misses parts of /proc and /sys.

VServer has last stable release in 2006 (but is still
being developed, it seems)

Mount namespace added, precursor of things to
come

Solaris is dead, but pionereed a lot of innovations.
OpenVZ by Parallels is a nice solution, but shares

kernel.

● Process containers/Cgroups (2006)

● Additional namespaces being introduced (2006)

– UTS (2.6.19)

– IPC (2.6.19)

– user (2.6.23)

– PID (2.6.24)

– net (2.6.24)

– more info: https://lwn.net/Articles/531114/

Towards the Modern Stack

Process containers developed by Google (Paul
Menage and Rohit Seth) to allow grouping of
processes within the kernel for resource
management

Merged as cgroups in 2007/2008 (kernel 2.6.24),
features were added over the years. Eventually
used for

- Resource limiting (memory)
- Prioritization (cpu and disk i/o)
- Accounting (resource usage)
- Control (freezing processes)
Namespaces were added for better isolation, uts =

unix timesharing system
Finished in 3.8, which is required for Docker et al.

● LXC (2008)

● LMCTFY (2013)

● Docker (2013)

● Rkt (2014)

Towards the Modern Stack

LinuX Containers were developed as a replacement
for chroot, allowing jails-like functionality using
namespaces and cgroups. Security was not too
good at the beginning (root was really root), got
better with unprivileged mode.

Let Me Contain That For You is an API based on user
intent. Low level (you set specific cgroups yourself).
Has some kernel patches. Merging into libcontainer

Docker was started by Solomon Hykes at dotCloud
(FR). Main advantage is (imho) container format.

Rkt by CoreOS wants to standardize. Appc to
describe a container's needs, different image
format (Application Container Image ACI), both
under control of Open Container Initiative

● Only contain the least amount of dependencies necessary to
start the application

● Run a single process or at least a single service

● Are stateless, or better yet, immutable

● Get config out of environment variables

● Export health metrics

Good Containers

Not an entire OS, no Ubuntu installation, preferably
just a single binary (Go is awesome for that)

No systemd, no supervisord, no init. Just the
application.

Containers are cattle, they come and go (as they
please?). Local state makes the container a pet,
losing it loses data. Immutable forces you to be
stateless

Environment variables are generally the easiest way
to pass local config. Service discovery works as
well, of course (etcd, Consul, etc.)

● Allows scaling of containers

● Manages connections to containers

● Manages container lifecycles

● Does not get in the way

● Containerization transforms the data center from being machine
oriented to being application oriented

Container Management

Management API around containers rather than
machines shifts the “primary key” of the data center
from machine to application. Benefits: no longer
worry about machine specifics, allow rollout of new
hardware easily, telemetry is tied to application

Self-healing is key building block

● Disclaimer: Hard to find exact information (with Google, oh the
irony)

● Distant past: Babysitter and Global Work Queue (up till ~2006)

● Present day: Borg (production from ~2005 onwards)

● Omega Project improved Borg (scheduling, PAXOS)

Google

Google infra is pretty proprietary and considered
trade secrets, so a lot is “heard from” or guessed.

GWQ used all machines in the Google network to
assign work to, mostly non-time-sensitive large
computations (batch jobs). Babysitter kept jobs
running.

Google's cale is insane and one-of-a-kind, still a lot
we can learn from it. Google has high expectations,
always on.

Borg was probably developed around 2003 and
brought into production around 2005, to replace a
lot of the custom management functions that were
around then.

Projects switched to Borg one by one (“resistance is
futile, you will be assimilated”)

Developed by Dougie Howser MD (j/k)

● Mesos started as student project at UC Berkeley RAD Lab

● First called Nexus (and demostrated under that name in 2009)

● Twitter got (very) involved in 2010 after presentation from
Benjamin Hindman

● Modelled after Google's Borg

– It is said that Google's Omega takes lessons learned from Mesos
back into Google

Mesos

Source: https://www.wired.com/2013/03/google-borg-
twitter-mesos/all/

Project started by Benjamin Hindman (who went to
Twitter), Andy Konwinski and Matei Zaharia
(Databricks) and professor Ion Stoica (Databricks)

As Mesos is modeled on Borg, it's very well suited for
large computational jobs. Job support in K8s is
fairly under-highlighted. Hadoop on Mesos for
specific questions is probably a lot better.

● Started by Joe Beda, Brendan Burns and Craig McLuckie

– Quickly joined by other Google Engineers

● Announced by Google mid-2014

● v1.0 released July 21, 2015

– At which time it was donated to the Cloud Native Computing
Foundation

Kubernetes

First called seven-of-nine (“friendlier Borg”) but
lawyers intervened.

CNCF was formed by Google and the Linux
Foundation

RedHat uses it for OpenShift
Developed in Go, to make sure no Borg/Omega code

would leak to the project

Interesting: http://queue.acm.org/detail.cfm?
id=2898444

● etcd

● API server

● Controller-manager

● Scheduler

Kubernetes Managing Core

Etcd used as the PAXOS layer on which to share
data

API server is entrypoint, for kubelets and kube-proxy
as well as kubectl. Update objects in etcd.
Designed to scale horizontally.

Controller-manager manages all Controllers
(DaemonSets, Replication Controller, Node
Controller, Endpoints Controller, Token Controllers),
talks with API server directly. Lots of separate
Controllers, compiled into one binary (Go Go!)

Scheduler places pods and tracks resource
utilisation. Talks to API server.

Kubernetes Managing Core

Etcd used as the PAXOS layer on which to share
data

API server is entrypoint, for kubelets and kube-proxy
as well as kubectl. Update objects in etcd.
Designed to scale horizontally.

Controller-manager manages all Controllers
(DaemonSets, Replication Controller, Node
Controller, Endpoints Controller, Token Controllers),
talks with API server directly. Lots of separate
Controllers, compiled into one binary (Go Go!)

Scheduler places pods and tracks resource
utilisation. Talks to API server.

● Kubelet

● Kube-proxy

● cAdvisor

● Nodes get Labels

– Examples:
● disk=ssd

● in_dmz=true

● have_crypto_accelerator=true

Kubernetes Worker Core

Kubelet is primary node agent, downloads and starts
pods scheduled for this node, mounts required
volumes (including secrets), executes liveness
probes, reports back to api server regarding node
and pods

Kube-proxy provides advanced routing (wouldn't call
it SDN), by mapping endpoints to specific ports on
all workers

cAdvisor is used by Kubelet to detect resource
shortages (probably replaced in the future with
more real-time methods)

Addons are available, kube-dns is very much
needed.

Kubernetes Worker Core

Kubelet is primary node agent, downloads and starts
pods scheduled for this node, mounts required
volumes (including secrets), executes liveness
probes, reports back to api server regarding node
and pods

Kube-proxy provides advanced routing (wouldn't call
it SDN), by mapping endpoints to specific ports on
all workers

cAdvisor is used by Kubelet to detect resource
shortages (probably replaced in the future with
more real-time methods)

Addons are available, kube-dns is very much
needed.

● Pods

– One or more containers running a service

– Exposes ports

– Has a unique IP address

– Has Labels assigned
● Examples:

– tier=frontend

– release=prod

– Placement based on Selectors
● Example: disk=ssd

The Components You Work With

Remember how containers run a single process?
Multi-container Pods consist of a container for
nginx, a container for fpm (php execution), a
container for a nginx metrics exporter and a
container for fpm metrics exporter

Only expose ports that are required for external
communication. Internal communication is “free”

Labels are very important, they group and indentify
pods.

Resources can be shared within a Pod (but can be
set per container as well)

Resources limits determine Pod priority, require=limit
is highest priority (Guaranteed), require<limit
Burstable, no limits or only require=Best Effort

IPs are chosen from pool (either local or global), SDN
can be used if needed (Calico, Flannel, etc.). IP are
shared between containers within a pod (same net
namespace)

● Controllers

– Manages collections of Pods

– Based on Selectors
● Example: app=bg-worker

– Different kinds of Controllers
● Examples:

– Replication Controller

– DaemonSet Controller

– StatefulSet Controller

– Job Controller

– Ingress Controller

The Components You Work With

Controllers create Pods in API based on cluster
statistics. Replication Controllers eg. make sure
there are always X Pods running of a certain type.

Example daemonset: fluentd (log aggregation)
Example statefulset: elasticsearch, databases
Some Controllers you no longer use directly

(Replication is managed via Deployment).

● Services

– Provide access to applications running in Pods (if required)

– Group the Pods associated with an application for easy access

– Round-robin through all the Endpoints

– Pods (not Controllers!) get added based on... Labels!

– Can be used for internal services (backend) as well as exposed
external services (frontend)

– External services require external support (Ingress, ELB, traefik, etc.)

The Components You Work With

Services allow for 'fixed' connection strings, eg. you
can always connect to 'elasticsearch:9200' within
the cluster (this does require kube-dns).

Can interact with external services (like ELB) using
annotations, “comments” added to a Service
description that can be read via the API.
Kubernetes-aware services will then be able to use
these as parameters (eg. to provide an SSL
certificate to the ELB via an arn resource).

● Exposes a random port to the network on all nodes

● Routing to endpoints happens within kube-proxy

Kube-proxy Specifics

Routing happens via iptables, using a refresh
interval.

Kube-proxy Specifics

● Deployments

● Namespaces

● Network Policies

● Persistent Volumes

● Secrets

● Service Accounts

● Federation

Lots of Options

Barely discussed the basics, lots of additional options
are being added. Kubernetes is under heavy
development. Every 4 weeks (more or less) a new
release.

As of March 6, 2017, 45k commits (since June
2014!), 1100 contributors (~44 commits per day on
average)

Want to learn more, check out Kelsey Hightower on
Youtube (he's super dope).

● Pod eviction

– First BestEffort Pods

– Then Burstable Pods

– Guaranteed Pods are not evicted

● Eviction based on resources usage

– Example with OOM-killer:
● BestEffort: oom_score_adj = 1000

● Guaranteed: oom_score_adj = -998

● Burstable: oom_score_adj = min(max(2, 1000 - (1000 * memoryRequestBytes) /
machineMemoryCapacityBytes), 999)

Failure Handling

Failure handling is important aspect of container
management. Kubernetes has a lot of heuristics in
place to determine the best way of dealing with
resource shortage.

But failure handling is also in place when nodes just
disappear, pods get automatically rescheduled (it's
bliss to be able to just reboot a machine without
customer noticing!)

● Log Aggregation

● Trending, monitoring and alerting

● Dashboards

Supporting Services

Logs are lost if not collected. Checking multiple logs
is tedious. Log aggregation makes it easier (and
searchable). We use ElasticSearch as storage
(statefulset!), Kibana as the frontend and fluentd
(daemonset) for shipping.

Prometheus works great with Kubernetes. Has native
support for scraping. Also written in Go. Also
derived from a Google project (Borgmon). Very
powerful. We use Grafana for graphing and
dashboards, alertmanager for ... alerting!

Several dashboard are available to give easier insight
into Kubernetes. We generally don't use them
(either too powerful or not powerful enough).

● Can be used to run applications over several Zones (eg. eu-
west1 and eu-central1 for AWS)

● Can be used to create hybrid clouds

● Can be used to run an application over multiple clouds (!!)

– Scale up where it is cheapest

– Move entire workloads in case of datacenter failure

● One unified interface for all clouds

– Splits dev from ops (again)

Federation

Hybrid clouds = Private Cloud + Public Cloud
Multiple clouds = AWS and GCE... Or Digital Ocean

and Scaleway... etc.
Moving workloads across clouds is fun and all, but

your DNS will still be pointing towards a failing
cloud, if you're unlucky.

Interesting future!

● Kubernetes community is very open, start at
https://kubernetes.io

Questions?

Was I any good?
What did you miss?

Thanks for listening

www.kumina.nl

